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Abstract
In recent years, climate change has causedwildfires across the globe to generally become larger and
more severe, creating new challenges for public health, housing and infrastructure, and natural
resourcemanagement. As the characteristics of wildfires change, it is critical to understandwhere
emerging risks for human and natural systems aremost profound.We assess how futurewildfire
potential, defined here as themeteorological conditions and the availability of burnable vegetation
types conducive towildfire occurrence, are projected to change in the future. To achieve this, we
combinemodelled temperature and precipitation to calculate the Keetch-ByramDrought Index
(KBDI) as a proxy for soilmoisture deficit and overlay aweighting factor representing burnable
vegetation derived from land cover classifications. Through our analysis of daily data at bothmid- and
end-of-century, wefind that climate-related changes, such as increasing temperatures and drying
patterns, will elevate wildfire potential globally, both in terms of severity ofmaximumdaily KBDI and
frequency of highKBDI days.We find that regions which have recently enduredmajorfire events,
including thewesternUnited States, Australia, and theAmazon, could experience increases in
maximumKBDI of up to 100 in places, withmore than 60 additional days of highKBDI bymid-
century, compared to the historical baseline. Additionally, at the end-of-the-century, regions across
much of Africa, Central America, and SouthernAsia are projected to emerge as wildfire hotspots.
While the occurrence of wildfiresmay still be rare today inmany regions, wefind that climatological
trends are projected to increase wildfire potential formuch of the globe, creating new risks for some,
and raising the challenge for alreadywildfire-prone communities to effectivelymanage forests and
protect people and critical resources.

1. Introduction

There has recently been a growing abundance ofmassive, severe wildfires across the globe, resulting in billions of
dollars of direct and indirect damages, ecosystem and habitat destruction, public health impacts, and tragically,
loss of life (Coogan et al 2019, Limaye et al 2019, French 2020). Climate change plays amajor role in this trend
(Abatzoglou andWilliams 2016, Partain et al 2016, Kirchmeier-Young et al 2017,Herring et al 2018), and as the
planet warms and precipitation patterns shift, it is generally expected that wildfire occurrencewill increase and
thatfire seasonswill lengthen formany areas of theworld (Flannigan et al 2009). A lengtheningwildfire season
could spell trouble for places like California where the days with extreme fire weather has alreadymore than
doubled since the early 1980s (Goss et al 2020). To build resilience and informdecisions relevant to localfire
management and preparedness, it is increasingly important not only to understandwherewildfire exposure is
the highest, but alsowhich regionswill experience significant changes in themeteorological conditions related to
wildfire occurrence.

The occurrence and severity of any single wildfire, however, is determined bymyriad factors, complicating
the prediction of future events.Where andwhen awildfire begins and its subsequent physical characteristics are
dependent upon a few key variables:meteorological conditions, fuel sources, ignition sources, and, inmany
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cases, human activity (Flannigan et al 2009).While the actual occurrence of awildfire and its characteristics after
ignitionwill depend onmany discrete factors, this paperwill focus onwildfire potential, or the conditions which
are conducive towildfires, by evaluating selectmeteorological drivers and land cover classifications.

1.1.Meteorological drivers
Wildfires are a natural and often recurring phenomenon that play a central role in ecological processes across
much of theworld (Cochrane andRyan 2009). Natural cycles in climate, ranging in timescales from seasonal to
interdecadal,may heighten or diminishwildfire frequency and severity over time (Flannigan et al 2009) by
bringing about periods of either hot and dry, or cool andwet weather.However, research indicates that an
increasing trend in globalfire activity and severity is partially attributable to climate change formany land cover
types around theworld, including fires in Alaska in 2015 (Partain et al 2016); British Columbia in 2017
(Kirchmeier-Young et al 2017); Australia in 2015–2016 (Herring et al 2018), and thewesternUS over the last
three decades (Abatzoglou andWilliams 2016)These trends are elevating the potential for larger andmore
frequent wildfires due to the relationship between climate change and increased aridity (Williams et al 2019) and
earlier spring snowmelt (Westerling et al 2006, Short 2014) driven bywarmer temperatures. Additionally, there
is evidence that fire seasons are lengthening inmany regions, increasing the chances for wildfire occurrence.
Notable examples of lengthening fire seasons include thewesternUnited States (Westerling et al 2006, Goss et al
2020), Spain, Portugal, and Italy (Jolly et al 2015).While sources offire ignition and land use changes are
significant contributors to the increase in global wildfire activity (Bowman et al 2009), climate change is
overwhelmingly identified as the leading cause (Gillet et al 2004,Westerling et al 2006, Pechony and
Shindell 2010, Abatzoglou andKolden 2013,Williams et al 2019). Global circulationmodels (GCMs) are
commonly used to explore the role of climate change in futurewildfire extent, severity, and season length
through variables such as temperature, precipitation, and humidity (Brown et al 2004, Liu et al 2010, Pechony
and Shindell 2010, Kitzberger et al 2017). No study to-date has assessed the impact of climate change on future
wildfire potential at a global level with such high temporal and spatial resolution as this study, while also utilizing
a new generation ofGCMs.We believe this level of granularity, which expands upon the findings of Liu et al
(2010), is critical for risk accounting and planning, especially as wildfires growmore dangerous and begin to
emerge in historically low risk environments.

Changes in the hydrological cycle related to climate change have contributed tomulti-year droughts inmany
parts of theworld (Cook et al 2015, Yoon et al 2015), which formany forested and dense vegetation types, leads
to an abundance of dry fuels conducive towildfire activity (vanMantgem et al 2009). Due to the relationship
between aridity and fuel availability, soilmoisture deficit, defined as the amount of water required to bring the
soil to full saturation, has beenwidely used inwildfire indices to serve as a proxy for wildfire potential (e.g., Liu
et al 2010) as wildfires tend to occurmore frequently during periods of severe drought (Stephenson 1998,
Westerling et al 2006,Dimitrakopoulos et al 2010).

1.2. Land cover
Land cover plays a critical role inwildfire behavior, as the predominant vegetation type of an area serves as a key
fuel source and influenceswildfire characteristics including frequency, intensity, and spread capacity (Cochrane
andRyan 2009). The exact characteristics of a firewill be significantly driven by the dryness and land
management practices of the fuel sources in conjunctionwith other drivers, but the dominant vegetation type of
an area can indicate the general level of burnability (Wahlberg et al 2014).Major wildfires occur acrossmany
different land cover types, ranging from coniferous (Thompson and Spies 2009) and deciduous forests (Li et al
2000) to grasslands and shrublands (Paysen et al 2000). Generally, the relationship between a specific land cover
type and historical burned area is consistent across area (Forkel et al 2019), allowing for broad assessments of
certain land cover types as they relate towildfire globally.

1.3. Evaluatingwildfire exposure
There is no consistent, generally agreed-uponmetric for evaluating wildfire risk, due in large part to local
differences in climate, soil, and vegetation types across the globe (Sommers et al 2011). Despite the usage of the
termwildfire risk, probabilistic estimates lack the ability to precisely identify where andwhenwildfires could
occur, and instead rely heavily upon decision-support frameworks, based largely on biophysical and
meteorological conditions (Thompson andCalkin). The predictive power of probabilistic wildfire assessments
has been somewhat limited due to the human variable, particularly with respect towildfire ignition, which often
determines where andwhen afirewill occur. Instead,many forward-looking fire outlooks use the termwildfire
potential, as in this paper, to describe the conditions that are conducive towildfires rather than to predict their
actual occurrence (Liu et al 2010, Dillon et al 2015).
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One such indexwhich utilizesmeteorological conditions to assess soilmoisture deficit, a component of
wildfire potential, is the Keetch-ByramDrought Index (KBDI) (Keetch andByram1968). KBDI is part of the
United States’National FireDanger Rating System andwas designed to estimate the effect of soilmoisture deficit
on vegetation and, subsequently, wildfire potential in the southeasternUnited States. KBDI is calculated using
precipitation and temperature variables to estimate evapotranspiration, and ranges from0 to 800, or fully
saturated soil tomaximum soilmoisture deficit, respectively.

The decision of whichmeteorological variables or indices to utilize for assessing future wildfire potential
depends largely on the research question at hand.While not a directmeasure of wildfire risk, KBDI is often used
as a proxy forwildfire potential (Keetch andByram1968, Liu et al 2010, Taufik et al 2015).We selectedKBDI
because of its wide usage, global comparability, and compatibility with global climatemodels (GCMs). It is
especially well-suited for global and forward-looking analyses that explore key,fire-relatedmeteorological
variables.

At least three operational systems actively use KBDI. TheNational FireDanger Rating System (NFDRS)uses
KBDI in conjunctionwith ignition and spreadmodels to estimate the extent of dry fuel availability (Burgan
et al 1998, Roads et al 2005); theUnited StatesDepartment of Agriculture’s Forest Service uses it for research and
warnings in the southeasternUnited States (Johnson and Forthum2001); and theAustralian states of Victoria,
New SouthWales andQueensland use it in an operational capacity tomap levels of potential fire severity based
on fuel dryness (Finkele et al 2006).

KBDI has also been applied tomany other regions and land-cover types, including SouthAfrica (Verbesselt
et al 2006), Lebanon (Mitri et al 2015), the greaterMediterranean region (Dimitrakopoulos and
Bemmerzouk 1998, Ganatsas et al 2011, Garcia-Prats et al 2015),Malaysia (Ainuddin andAmpun 2008), Hawaii
(Dolling et al 2009), California (Yoon et al 2015), and globally to assess wildfire potential due to a changing
climate (Liu et al 2010).

KBDI is suitable for describing fuelmoisture content andwildfire spread after ignition because of its
correlationwith vegetationmoisture acrossmany land types (Dimitrakopoulos andBemmerzouk 2003,
Verbesselt et al 2006, Xanthopoulos et al 2006, Pellizzaro et al 2007). After investigating if KBDI is directly related
to plant water stress in theMediterranean, Xanthopoulos et al (2006) found that KBDI is a strong proxy of
moisture deficit in soils, living plants, and dead organicmatter, whichmay lend itself as a predictor of intense
wildfire behavior. Several studies have also found there is a correlation betweenKBDI and burned area in other
vegetation communities. Dolling et al (2009) found a strong relationship between fire activity across the
Hawaiian Islands over a twenty-year period. Relationships between highKBDI and burned area have also been
identified in theWesternUS (Abatzoglou andKolden 2013, Abatzoglou andWilliams 2016).

Each of these studies utilizes KBDI to approximate fuel dryness. Despite some of the physical assumptions
(Chu et al 2002, Taufik et al 2015) and limitations (see Limitations section formore), KBDI is especially well-
suited for evaluating future wildfire potential as it can be calculated usingGCMprojections of temperature and
precipitation. The simplicity of the KBDI index, which keeps topographical and ecological parameters fixed,
makes it a useful indicator for global analyses, especially when comparingmeteorological conditions across
different regions and timescales usingGCMs.

Our assessment adapts the KBDI approach presented by Liu et al (2010) to assess wildfire potential on daily
timesteps through the end of the century, allowing us to capture severity and frequency of KBDI extremes. (In
this study, the term ‘severity’ is used to refer to conditions which could give rise to awildfire, rather than to
describe the characteristics offires themselves). Unlike Liu et al (2010), we incorporate land cover types in our
analysis, and build aweighting scheme based on historical wildfire occurrences as ameans to represent fuel
sources and determine the burnability of an area.With this approach, we are able project both absolute and
relative differences of future wildfire potential in aworld altered by climate change.

2.Data sources

Formodeled precipitation and temperature variables, we use the¼° degree statistically downscaledNASAEarth
ExchangeGlobal DailyDownscaled Projections (NEX-GDDP), derived fromCoupledModel Intercomparison
Project 5 (CMIP5)GCMoutput (Thrasher et al 2012). Our results are based on themulti-modelmean of 18
models (see theClimatemodels section of the supplementarymaterials (available online at stacks.iop.org/ERC/
3/035002/mmedia))using themaximumdaily temperature and total daily precipitation data variables under
the Representative Concentration Pathway 8.5 (vanVuuren et al 2011), a scenario relevant from a risk and
preparedness perspective. For land cover, we utilize the European Space AgencyClimate Change Initiative (ESA
CCI) LandCover dataset (ESA 2017). This dataset renders the 2015 land cover type at approximately a 300-meter
resolution across different classifications.We compare this against historical burned areas in theCollection 6
Moderate Resolution Imaging Spectrometer (MODIS)BurnedArea product (Giglio et al 2018) to derive global
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occurrence offire activity within each land cover classification, and implement thefindings fromKganyago and
Shikwambana (2020) to associate ESACCI land cover types with fire intensity. Additionally, we evaluate trends
at a sub-regional level using the climate reference regions defined by Iturbide et al (2020) to aggregate each
metric of wildfire potential to broader, climatologically consistent geographic regions (see the Sub-region
definitions and Sub-region results sections of the supplementarymaterials).

3.Methods

We set out to evaluate future wildfire trends through an evaluation of wildfire potential. Our analysis does not
attempt to indicate the likelihood that afire will occur at a given location, but rather if the conditions are
conducive towildfire activity. Although the actual occurrence and characteristics of any individualfire depends
heavily on the alignment of discrete variables, we focus our analysis on integrating fuel sources, based on land
cover classification, with an index of soilmoisture deficit (KBDI), to estimate the effect of climate change on
wildfire potential globally.

3.1. CalculatingKeetch-Byramdrought index (KBDI)
Weusemodelled temperature andprecipitation to calculateKBDI and evaluate vegetationdryness as it relates to
wildfire potential.KBDI ranges from0–800,where 0 indicates fully saturated soil, and 800 indicates themaximum
soilmoisture deficit, representative of 800 hundredths of an inch (i.e., 8 inches)of deficit.
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Here Qt is the KBDI value on day t, -Qt 1 is the KBDI of the previous day, dQ is the daily KBDI adjustment, and
dP is the daily precipitation total. dQ is in turn a function of the dailymaximum temperature (T ), the average
annual precipitation total (R), and the time increment (dt , one day for this application).We use an approach
derived fromLiu et al (2010) to evaluate KBDI in the historical baseline (1975 to 2005) and future time periods
(mid-century, 2045 to 2055, and end-of-century, 2085 to 2095). The equations for KBDI take as inputs daily
precipitation and dailymaximum temperature, which are output from theNEX-GDDPproduct (seeData
Sources). In equations (1) and (2), as in Liu et al (2010), we use a subset of years to build a climatological average
year over whichwe iterate to allowKBDI values to spin-up to appropriate values and stabilize.We go one step
further than Liu et al (2010) by using this spun-up climatological year to initialize our dataset, building in a run-
up period offive years before calculatingKBDI values for the years of interest in our historical baseline and
projection period. See theKBDI initialization and calculation section of the supplementarymaterials for amore
detailed description this approach.

These calculations result inKBDI daily values over a historical baseline and a projection time period. For
each year in the projection period, we derive fourmetrics based on annual values to capture both future absolute
and relative difference from the baseline over the dimensions of severity and frequency.

Formeasures of relative difference, the values reflect the differential of the future year of interest compared
to the historical baseline average. For example, for the year 2050, we compare themaximumKBDI value to the
annual average of the years 1975 to 2005.We then average each year in our projection period, e.g., 2045 to 2055,
to arrive at ourfinal relative differencemetric value. Frequency of days with highwildfire potential relate to the
KBDI scale breakdown presented in Liu et al (2010), whereKBDI values in the 0–200 range are considered low
risk, 200–400moderate, 400–600 high, and 600–800 extreme. As such, any daywithKBDI greater than or equal to
400 is counted as a highwildfire potential day and is the threshold forwhichwe evaluate frequency of highKBDI
days in this analysis.

3.2. Calculating burnability factor
Fuel sources play a vital role infire behavior, dictating aspects of severity and rate of wildfire spread (Cochrane
andRyan 2009). As a proxy for identifying the extent of burnable area, we incorporate land cover classifications
as a component of our assessment of wildfire potential. To do this, we assign a binnedweighting factor to
represent the burnability to each ESACCI land cover classification (see the Land cover classifications section of the
supplementarymaterials). To derive this weighting factor, we assess general, global trends in historicalfire
intensity and occurrence of wildfire within each land cover classification and combine them into a single
burnability factor.

For intensity, we utilize the averagemaximum fire radiative power (FRP) across the regions evaluated in
Kganyago and Shikwambana (2020).We normalize these values and assign intensity factor values of 1/3, 2/3,
and 1 to the land cover classificationswith normalizedmaximumFRP ranging from0–1/3, 1/3–2/3, and
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2/3–1, respectively. Additionally, since the land cover types presented inKganyago and Shikwambana (2020)
represent a grouping ofmultiple ESA classifications (e.g., ‘forest cover’ containsmultiple ESACCI land cover
types associatedwith forests), the relevant intensity factor ismapped directly to the underlying land cover
classifications within each grouping.

To represent occurrence of historical wildfire activity within land cover classification types, we implement
theCollection 6MODIS BurnedArea product (Giglio et al 2018).We resample gridded burned area data from its
500-meter resolution to that of the ESACCI land cover dataset (300-meter) to identify which ESACCI grid cells
have been identified as burned.We then consider two aspects of globalfire activity: (1) the contribution of each
land cover classification to total global burned area and (2) the proportion of each land cover classificationwhich
has burned. Averaging over allmonths from2000–2020, we normalize both (1) and (2), average, and normalize
again. Fromhere, we assign afinal binnedweighting factor of 1/3, 2/3, and 1 based on the normalized values
(see intensity factor derivation above), representing the fire occurrenceweighting factor.

Finally, the average of the intensity factor and occurrence factor are averaged to arrive at afinal burnability
coefficient (table SM2), where zero represents no burnability and one represents a high degree of burnability.
Certain classifications, such aswater and urban areas, are excluded so that our assessment of burnability
represents the pervasive vegetation types of the larger area and is not reduced by these land cover types.
Remaining land cover types classified as non-vegetation inKganyago and Shikwambana (2020) are by default
assignedweighting factor scores of zero. By leveraging decades of satellite-based data of wildfire occurrence and
intensity, we are able to broadly represent the burnability of different land classes, though recognize some
vegetation communitiesmay still not be fully represented in thefindings. Caveats with this approach are further
addressed in the Limitations section.

We then upsample ESA land cover weighting factors to the resolution of the climatemodels (1/4°). This is
done by averaging theweighting factors for the land cover grid cells within each climate grid cell to arrive at a
value formean burnability, which is continuous from zero to one (figure 1). This value is used as a coefficient to
represent available fuel sources and is referred to as the burnable coefficientwithin this paper.

3.3. Applying the burnable coefficient toKBDImetrics
Toplace themeteorological conditions associatedwithwildfire in the context of available fuels sources, we apply
the burnable coefficient (figure 1) to the rawmetrics of KBDI. Thus, the KBDImetrics derived from the climate
models are adjusted based on the burnability of land cover classifications within each grid cell. For example, a
location in the Sahara, which registers 800 for annualmaximumKBDI, could be reduced to 0 after the
coefficient is applied, since there is almost no burnable vegetation in the region, only bare area per the ESACCI
designation. In effect,most grid cells are discounted to better reflect wildfire potential based on availability of
fuel sources in the area. Thesemetrics with the burnable coefficient applied are referred to as the adjustedmetrics
throughout this paper and are denoted by the adj subscript.

Figure 1.Upsampled land cover burnable coefficient, where 0 indicates no burnable land cover classificationswithin the 1/4° grid
cell, and 1 indicates that all land cover classificationswithin the 1/4° grid cell have a high degree of burnability.
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3.4. Aggregation to sub-region level
To evaluate higher-level trends and compare across regions, we aggregate each adjustedKBDImetric to the sub-
region level as defined by Iturbide et al (2020). To highlight the highest wildfire potential valueswithin a sub-
region, we identify the 95th percentile value of all grid cells within each sub-region for all four adjustedmetrics
(see the Sub-region results sections of the supplementarymaterials).

3.5. Evaluation of observedfire activity
To assess approximately howwell our approach alignswith observed fire activity, we implement an assessment
offire frequency within each climate grid cell based on theMODIS burned area product. In this approach, we
upsample theMODIS burned area product, counting the number of years inwhich afire occurredwithin each
climate grid cell. This observed data spanning from2000–2020 effectively serves as a proxy forwhere fire activity
has been themost common in the last 20 years. This is then compared to themodelled historical baseline
(1975–2005) formaximumKBDIadj to assess correlation between our calculatedwildfire potential values and
observedfire occurrence.

4. Results

Our analysis produces four indicators of futurewildfire potential: two based on absolute values of KBDI and two
based on relative difference compared to the historical baseline, all with consideration for land cover burnability.
Evaluating these adjustedmetrics, we identify areaswhich exhibit the highest absolute and relative difference in
wildfire potential during bothmid- and end-of-century time periods. Figures 2 and 3 show raw and adjusted
globalmaps for eachmetric atmid-century. Additionally, figure 4 highlights specific regionswhich exhibit
higher values for each respectivemetric at end-of-century.

4.1. Absolute severity
Absolute severity ismeasured by the highest KBDI value (0–800) attained for each given location in a year, or the
maximum soilmoisture deficit at the peak of thewildfire season, averaged over the time period of interest. At
mid-century, when evaluating raw absolute severity values (figure 2(a)), desert regions such as the Sahara,
Arabian Peninsula, and central Australia, unsurprisingly approach themaximumpossible KBDI value of 800.
However, when burnable land cover classifications are factored in by applying the burnable coefficient (figure 1),
many of these desert regions show little or nowildfire potential atmid-century due to lack of fuel sources
(figure 2(b)). Consequently, it is the regionswith a combination of highmaximumKBDI and extensive burnable
land cover which emerge with the highestmaximumKBDIadj. Semi-arid regions across thewesternUnited

Figure 2.Mid-century wildfire potential severity.Map (a) indicates the raw annualmaximumKBDI value, averaged across the years
2045–2055, (b) shows adjusted absolute severity, whichwas derived by applying the burnable coefficient to the raw values frommap
(a).Map (c) indicates differential 2045–2055 average annualmaximumKBDI relative to the baseline, andmap (d) shows the relative
severity values frommap (c)multiplied by the burnable coefficient.
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States,Mexico, and northernAustralia record highmaximumKBDIadj values, as do subtropical and tropical
regions including the Amazon rainforest, Central America, western and central Africa, and south-eastern Asia.
At the sub-region level (see the sub-region results section of the supplementarymaterials), driven in part by the
high volume and extent of burnable biomass, Central,West, SouthWest, andNorth East Africa, alongwith
NorthernCentral America andNorthernAustralia, are all among the sub-regionswith the highest adjusted
absolute severity atmid-century, each of which has a 95th percentilemaximumKBDIadj value in excess of 600.

By the end of the century, wefind the tropics, and to a lesser extent, the subtropics, continue to experience
the highest absolute values formaximumKBDIadj.We alsofind thatmaximumKBDIadj is projected to increase in

Figure 3.Mid-century wildfire potential frequency.Map (a) indicates the raw annual count of days where KBDI is above the high
threshold (exceeds 400), averaged across the years 2045–2055, (b) shows adjusted absolute frequency, whichwas derived by applying
the burnable coefficient to the raw values frommap (a).Map (c) indicates differential 2045–2055 average annual count of highKBDI
days relative to the baseline, andmap (d) shows the relative frequency values frommap (c)multiplied by the burnable coefficient.

Figure 4.End-of-century (2085–2095) adjustedmetric values, highlighting select hotspot regions. Thismap reflects the adjusted value
(raw values with burnable coefficient applied) for the fourmetrics of wildfire potential absolute and relative severity and frequency.
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all sub-regions across the globe. All sub-regions inAfrica outside of the Sahara have the highestmaximum
KBDIadj 95th percentile values globally at the end of the century, all of which exceed 660.

4.2. Relative severity
The relative severitymetric highlights regionswhere themaximumKBDI value is significantly higher than the
1975–2005 baseline (figures 2(c) and (d)). Generally, the highest raw changes inmaximumKBDI are evident in
the tropics, includingwestern portions of theAmazon and south-eastern Asia (figure 2(c)). There are
noteworthy changes in themid-latitudes as well, such as the continental US and central Asia.When considering
land cover (figure 2(d)), northern latitudes inNorth America andRussia are further amplified, as are central
Africa, the Amazon, and areas within southeast Asia. Among sub-regions, change inmaximumKBDIadj between
the baseline period andmid-century ismost pronounced in SouthAmerica, with theNorth, NorthWestern, and
Monsoon regions of the continent ranking as the three highest relative severity sub-regions globally. However
high increases inmaximumKBDIadj are also expected in othermid-latitude, subtropical, and tropical sub-
regions aswell, as evidenced by the 95th percentile values inWestern andCentral NorthAmerica and Southern
Asia all increasing bymore than 90KBDIadj over the baseline, representative of at least an 18% increase within
each region.

Wefind that the largest change inmaximumKBDIadj for the end of the century occurs in the northern areas
of SouthAmerica (figure 4(b)), inland areas just east of the Adriatic Sea, and Southeast Asia, especiallyMalaysia,
Indonesia, and PapuaNewGuinea. Among sub-regions for change inmaximumKBDIadj, tropical and sub-
tropical regions in SouthAmerica andAfrica are expected to remain hotspots, ranking among the highest values
both atmid-century and end-of-century. Other notable sub-regions include theMediterranean,Western and
Central NorthAmerica, NorthernCentral America, and Southeastern Asia, which all exhibit high 95th
percentile change inmaximumKBDIadj, increasing bymore than 160, or at least 34% respectively, by the end of
the century.

4.3. Absolute frequency
The absolute frequencymetric evaluates the average number of days per year whenKBDI exceeds 400, which is
considered high, as defined by Liu et al (2010). These high days represent timeswhen themeteorological
conditions evaluated in this study, temperature and precipitation, are particularly conducive towildfire activity.
As a result, areas such as in the Southwest US, westernAmazon, southernAfrica, and Indiamay experience
weeks ormonths where thewildfire potential is elevated (figure 3(a)).When evaluatedwith the burnable
coefficient (figure 3(b)), moremid-latitude, subtropical, and equatorial regions showhigher absolute frequency
of wildfire potential. Broad areas of the tropics, such asmuch of India, and the non-equatorial regions of central
and southernAfrica, are all highly vegetated regionswith a significant number of high daysadj. At the sub-region
level, SouthWest, Central andWest Africa, NorthernCentral America, andNorthernAustralia could all
experience exceptionally frequent occurrence of high daysadj. These sub-regions are all places where
temperatures remain high year-round, and any extended period of precipitation deficit could be correlatedwith
highfire risk.

By the end of the century, parts of subtropical central and southern Africa (figure 4(c)) are projected to
experience well over 150 high daysadj per year. Tropical sub-regions will continue to have themost elevated
wildfire potential days by end-of-century, particularly inNorthernCentral America, SouthWest and South East
Africa. NorthernCentral America is expected to have the highest number of high daysadj among all sub-regions
with a 95th percentile value of 280 by end-of-century. Additionally, sub-regions including Central and Southern
Australia, alongwith Southern Asia, will emerge as hotspots with elevated counts of high daysadj at end-of-
century.

4.4. Relative frequency
In addition to the absolute number of days with highKBDI, we also evaluate the difference in the number of high
days relative to the baseline. Thismetric of change highlights regionswhichmay have experienced a few or no
high days in the 1975–2005 baseline but could experiencemore frequent high days in the future. The regions
with themost notable increase in high days tend to be semi-arid regions, places where elevatedwildfire
conditionsmay already persist for amajority of the year butwill subsequently extend to span the full year
(figure 3(c)).When the burnable coefficient is applied (figure 3(d)), many of these semi-arid regions, including
Central and SouthernAustralia remain hotspots, as the change in number of high daysadj are among the highest
globally. NorthernCentral America is projected to add themost high daysadjwith a 95th percentile increase of 70,
or 33%higher than the historical baseline. Though less extensively burnable, parts of the sub-regions of South
West and South East Africa are both projected to havemore than 50 additional high daysadj each bymid-century,
representative of 32%and 51% increases, respectively, over the historical baseline.
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By the end of the century, parts of Australia, southern Africa, Central and SouthAmerica, and southern
Europe are all projected to have a change in high daysadj in excess of 60, a significant increase from the historical
baseline, oftenwellmore than double the number of high daysadj experienced in the past. In the southwestern
United States, the change in high daysadj is projected to rise bywell over 100 additional days (figure 4(d)),
representing severalmonths’worth of additional elevatedwildfire potential days. The sub-regions projected to
experience the greatest change in high daysadj by end-of-century span the globewithNorthernCentral America,
SouthWest and South East Africa, SouthernAustralia, andWesternNorth America all expected to have a 95th
percentile change in high daysadj greater than 100 compared to the historical baseline, eachwith a relative increase
in excess of 66%.

4.5. Comparison to observedfire activity
To broadly evaluate howwell our estimates of wildfire potential alignwith observed fire activity, we compared
our historicalmaximumKBDIadj to annual occurrence offire based on theMODIS burned area product, as
discussed in 3.5 Evaluation of observed fire activity of theMethods section. Although these two datasets evaluate
differentmetrics and time periods (wildfire potential from1975–2005 and frequency offire occurrence from
2000–2020, respectively), this analysis allows us to identify general relationships between ourmodelled results
and observedfire activity. Using a Spearman rank-order correlation, we find amoderately strong relationship
between these two datasets across all land grid cells globally, with a correlation value of 0.61 (P< 0.001).While
wildfire potential is representative of where fires could occur, this comparison indicates that ourmaximum
KBDIadj value in the historical baseline broadly alignswith areas in whichfires have occurredwith regular
frequency in the recent past.

5.Discussion

Through our evaluation of futurewildfire potential, wefind significant increases in both severity and frequency
of conditions conducive towildfire activity. Climate change and consequent warming and drying patterns are
projected to elevate the potential for wildfires across all vegetated regions of the globe.We alsofind that even
marginal changes in just one dimension ofwildfire potential could create novel risks in historically wet and cool
regions or increase the chances of severe wildfires in alreadywildfire-prone areas.

InCentral and SouthAmerica, as well asmuch of Africa, year-round high temperatures coupledwith any
period of reduced precipitation, for example as a result of drivers such as the ElNiño-SouthernOscillation
(Flannigan et al 2009), will quickly introduce levels of highwildfire potential. This is particularly the case for
maximumKBDIadj at bothmid- and end-of-century.Wefind broad agreement between our end-of-century
results and those of Liu et al (2010), including thefinding that areaswith the highest relative increases inwildfire
potential in the future are the same as thosewith largefire potential at present.

Manymid-latitude locations emergewith some of the highest change inmaximumKBDIadj globally, places
whichmay not necessarily have experienced a high frequency of wildfires historically. However, the dominant
vegetation type is highly burnable andmeteorological conditions are trending towards higher potential for
wildfires. As a result,many of these communitiesmay be less equipped to deal withwildfires and potentially be
more vulnerable due to their lack of recent experiencemanaging large-scale wildfire events. Additionally, the
Amazon, with its exceptionally high volume of biomass, is a notable hotspot for futurewildfire activity as the
extent and severity of drought could significantly expand throughout the century (Duffy et al 2015). In addition
to experiencing highKBDI, we find that the number of high daysadj in the Amazonwill significantly increase. This
is in agreementwith observational studies showing that thewildfire season has increased in length by over a
month over the last 35 years (Jolly et al 2015). Longerwildfire seasons in the Amazon (figure 3(d)) could also
increase the severity and frequency of runaway fires from agricultural and land-clearing activities, whichwould
have an even greater impact on local biodiversity and globalfire emissions.

Manymid- and upper-latitude regions, such asNorthAmerica andNorthern andCentral Europe, are some
of the places where the effects of climate change, namely rising temperatures and shifting precipitation patterns,
will be disproportionately felt compared to the rest of theworld. Although the current exposure towildfiresmay
be relatively low in some of these areas, theymay become hotspots for risk over the course of the century. This
exposure is particularly noticeable for change inmaximumKBDIadj, for instance in theCentral Europe sub-
region, where the conditions will be significantlymore conducive towildfires by the end of the century due in
part towarming trends. For example, Brown et al (2020) found that warming is themain driver of higher KBDI
values inNorth America due to that fact that relative temperature increases are generally higher and uniformly
one-directional compared to precipitation changes.

Tropical regions have already experienced a rapid rise in bothfire size and frequency in recent decades, in
part due to landmanagement practices (Flannigan et al 2009), a trendwhich seems likely to continue. Some of
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the highest counts of number of high daysadj could occur in the vegetation-dense areas of Australia, where recent
wildfires demonstrated howdry periods can contribute to severe, widespread, and damagingwildfires. By the
end of the century, the number of highKBDI daysadj per yearwill be a significant threat tomany regions around
theworld, as the frequency of days with highwildfire potential increases, elevating the chances that a large,
destructivefire, or an exceptionally long fire season, could occur.

Like Liu et al (2010), we alsofind that some of themost pronounced shifts in wildfire potential are due to
relative increases in highKBDI days, especially atmid-latitudes. At the foothills of theHimalayas, a significant
increase in number of high daysadj is projected to elevate wildfire potential for a larger portion of the year, likely
overlappingwith intentional agricultural fires that are usually ignited by local farmers betweenOctober and
November (Jethva et al 2019). Populations in thewestern region of theUnited States are well acquaintedwith
wildfires, which typically occur in late summer (September andOctober), butmay have to contendwith even
largerfires earlier and later in the year as higher temperatures and extended dry periods build up fuel loads. As a
result of prolongedwildfire seasons due to climate change, itmay become necessary to extend fire bans to last a
majority or the entirety of the year.

Extreme northern latitudes, such as parts of northernCanada andRussia, begin to exhibit some high daysadj
inmid- and end-of-century time periods. Although thewildfire seasons in the extreme northmay not be as long
as in other parts of theworld, the combination of widely available burnable fuel sources and at least a few high-
risk days indicate that under drier and hotter conditions, wildfires will be increasingly possible. This suggests
thatmany regionswhich have lowormoderate wildfire potential today could emerge aswildfire hotspots as early
asmid-century.

6. Limitations

There are several notable limitations in ourmethodology. First and foremost, this is an assessment ofwildfire
potential, and addresses only at a high level the prevailing conditionswhichmay allow for awildfire to occur and
expand.Whether or not afire actually occurs, as well as the subsequent characteristics of a fire, depend onmany
discrete factors, including ignition source and certain localmeteorological conditions such as humidity and
wind, which are excluded fromour analysis. Nowildfirewill occur without an ignition source, and yet a single
spark can be enough to initiate a devastatingwildfire under the right conditions. Ignition can be either natural or
related to human activity, the exact source of which plays a critical role in the number offire occurrences and
area burned (Syphard andKeeley 2015). Additionally, some firesmay be set intentionally (legally or illegally),
whether for prescribed burns as part of wildfiremitigation programs (Fernandes andBotelho 2003), for
agricultural purposes (McCarty et al 2007), or for clearing forests for pastures (Beck et al 2008).While set
intentionally, these types offires can becomeuncontrollable and evolve into awidespreadwildfire, asmay have
been the case forwildfires in Brazil in 2019 (Hughes 2019). Our analysis does not attempt to account for various
types of ignition sources and their associated degrees of uncertainty, instead focusing onwherewildfires could
occur based on prevailingmeteorological drivers related to climate change and existing land cover types.

Within the components of ourwildfire potential approach, several notable constraints also exist. Although
our analysis extends through the end of the century, the ESAdataset is a point-in-time land cover classification
from2015. By the end of our analysis window, land cover will be altered in sometimes significant ways, not only
from changes to land use, such as conversion of land to built environment or forest to pasture, but also from
changes driven by climate change (IPCC2019), for example desertification and shifting biomes. As such, our
analysis reflects wildfire potential and the impacts of climate change based on 2015 land cover classifications and
does not attempt to project changes in land cover over time. By evaluating the land types which burned in past
wildfires, we carry forward land use histories and some of themeteorological effects which gave rise to observed
fires. These historical observations are used to calculate the burnable coefficients, whichmay ormay not be
representative of the future.

As discussed in theMethods section, we assign binnedweighting factors ranging from zero to one to each
ESACCI land cover classification (see the LandCover section of the supplementarymaterials), based on
composite normalized values offire intensity fromKganyago and Shikwambana (2020) and offire occurrence
derived from theMODIS BurnedArea product (Giglio et al 2018). This approach allows us to apply a burnable
coefficient across the globe after upsampling to a¼° resolution.However, there are several caveats in this
approach. For fire intensity, Kganyago and Shikwambana (2020) evaluate only three regions of the globe: the
westernUnited States, Brazil, and easternAustralia. Furthermore, the analysis covers only two years, 2018 and
2019, years inwhich large, severe fires occurred in each of the analysis regions. Additionally, ESA land cover
types are grouped and evaluated together, reducing the granularity of fire intensity associated to specific land
cover types. As a result, the fire intensity component of our burnability weighting factormay not capture the full
range of possible intensity values globally and over time, which is further locally dependent upon evenmore
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discrete conditions. However, it provides us amethod to broadly associate ESACCI land cover classifications
withmaximum fire radiative power based on historical data. For fire occurrence, theMODIS BurnedArea
productmay overrepresent the susceptibility of wildfires for particular land cover classifications, for instance in
agricultural lands, where intentional fires set for cropmanagement purposes count the same as a truewildfire.
Finally, our approach to normalize, average, and bin each component of the burnability weighting factor
ultimately reduces the precision of our results. Additionally, evenwithin an individual land cover type, there are
species-specific relationships with certainwildfire characteristics, such as severity (Rogers et al 2015), for which
we cannot account.While our approach allows us to derive a single composite factor for burnability, we
acknowledge that our results would changewith amore refined land cover classificationweighting scheme.

KBDI has some caveats of its own.Most notably, the indexwas developed in the southeasternUnited States,
and thus reflects the relationship between evapotranspiration and vegetation dryness of this region. As a result,
this formulamay not necessarily hold up aswell across the globewhen evaluating different vegetation and soil
types. These deficiencies are well documented, and other studies havemade attempts to improve theKBDI
equation (e.g., Taufik et al 2015). As a result, regionsmay not as accurately reflect the actual soilmoisture deficit
for a given region as compared to the southeastUS. For example, Taufik et al (2017) found that KBDI performed
better in tropical wetland ecosystemswhen accounting forwater table depth. Localizedwater table and soil
characterization datawere not used in our analysis but could supplement future research of wildfire potential.
Burning potential in fuel-limited ecosystems such as shrub and grasslandsmay bemore correlatedwith
antecedent precipitation rates, and generally, fuel productivity rather than fuel dryness. However, we elected to
use fuel availability, and ametricmore indicative of fuel dryness because the high(er) level ofmodel agreement
amongGCMswhen projectingmoremoderate levels of climatic changes. Fuel productivity, rather, relies heavily
upon intra-seasonal estimates of precipitation spikes, the volumes of rainfall responsible for significant fuel
build-up in grasslands and shrublands. Although a fewGCMsmay show significant changes in rainfall when
attempting to simulate seasonal or intra-decal oscillations such as ENSO, the degree ofmodel agreement in
projecting such events (e.g., ENSO) remains low (Taschetto et al 2014, Chen et al 2017), and seasonal
precipitation spikes are not evident when averaging across decades. Globally, fuel continuity and fuel dryness are
the dominant factors of burnt area globally (Kelley et al 2019), whichmay generally suggest that our election to
measure fuel availability and dryness allows for broader, global applications.

Additionally, our results are subject to the inherent limitations of climatemodels.Model simulations,
including the downscaled product of theCMIP5 generation climatemodels used in our analysis, are imperfect
tools andmay perform relatively better orworse in certain regions and timeframes (Flato et al 2013). Extreme
precipitation anomalies such as droughtmay not always bewell captured in theGCMs (Dai 2006, Kendon et al
2012), leading to underrepresentation of risks in some areas. In northern latitudes, for example, the alignment of
prolonged drying patterns and extreme temperatures could produce severe wildfires. Our results are themulti-
modelmean of an 18-model ensemble, which attempts to limit biases from individualmodels, but does not
resolve systematic biases present across all GCMs (Knutti et al 2010), nor does it represent the full range of
variability present acrossmodels.

7. Conclusion

Our analysis evaluates futurewildfire potential globally, usingKBDI and land cover classifications to represent
climatological conditions related towildfires and the availability of burnable fuel sources, respectively. Through
analysis of both severity and frequency of wildfire potential, we find the absolute and relative dimensions of
wildfire potential are projected to increase, to varying degrees, across the entire globe. Tropical regions emerge as
hotspots, where an abundance of burnable land cover combinedwith rising temperatures and changing
precipitation patterns elevate thewildfire potentialmaximum severity.Manymid- and high-latitude regionswill
also experience significant increases inwildfire potential, particularly by the end-of-century. Formost regions,
the additional number of highwildfire potential days in a season is estimated to increase, signaling an urgent
need for local authorities to heavily invest inwildfire prevention andmitigation strategies throughout the year.
While wildfiresmay still be rare occurrences inmany places globally, we find that shifting patterns of
temperature and precipitation driven by climate change are increasingwildfire potential across the board. As a
result, these patterns are likely to create new levels of risk and challenge efforts to effectivelymanage forest
systems and protect communities across the globe.
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